Dynamic Scheduling Algorithm Based on Evolutionary Reinforcement Learning for Sudden Contaminant Events Under Uncertain Environment
نویسندگان
چکیده
For sudden drinking water pollution event, reasonable opening or closing valves and hydrants in a distribution network (WDN), which ensures the isolation discharge of contaminant as soon possible, is considered an effective emergency measure. In this paper, we propose scheduling algorithm based on evolutionary reinforcement learning (ERL), can train good policy by combination computation (EC) (RL). Then, optimal guide operation real time sensor information, protect people from risk contaminated water. Experiments verify our achieve results effectively reduce impact events.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملFlow-shop Scheduling Based on Reinforcement Learning Algorithm
In the paper a machine learning based method will be proposed to give a quasioptimal solution to the m-machine flow-shop scheduling problem. Namely, given a set of parts to be processed and a set of machines to carry out the process and the sequence of machines is fixed, each part should have the same technological path on all machines; the order of jobs can be arbitrary. The goal is to find ap...
متن کاملA Scheduling Reinforcement Learning Algorithm
This paper presents a scheduling reinforcement learning algorithm designed for the execution of complex tasks. The algorithm presented here addresses the highlevel learning task of scheduling a single transfer agent (a robot arm) through a set of sub-tasks in a sequence that will achieve optimal task execution times. In lieu of fixed interprocess job transfers, the robot allows the flexibility ...
متن کاملMultiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment
In this paper several multiagent reinforcement learning algorithms are investigated, compared and analyzed. An effective reinforcement learning algorithm based on non Markov environment is proposed. This algorithm uses linear programming to find the best-response policy, and avoids solving multiple Nash equilibria problem. The algorithm involves simple procedures and easy computations, and can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex system modeling and simulation
سال: 2022
ISSN: ['2096-9929']
DOI: https://doi.org/10.23919/csms.2022.0014